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We present here a class of solitary wave solutions for nonlinear periodic Bragg gratings. The effect of
periodic coefficients is to cause additional band gaps to open up. It is in these Rowland ghost gaps that solitary

waves have been found.
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L. INTRODUCTION

In a diffraction grating a periodic error in the ruling gives
rise to high diffraction intensities at angles close to the actual
line. These additional lines, ‘“Rowland ghosts,” were exam-
ined by Rowland in 1902 and Pierce in 1879 [1]. These
ghosts are caused by the double periodicity of the grating: a
rapid variation with a period close to the wavelength of light,
and a slow variation with a much longer period. We present
here an analysis for nonlinear fiber Bragg gratings which
have this same dual periodicity. A schematic of the refractive
index profile can be seen in Fig. 1, where the light propa-
gates perpendicular to the planes of constant refractive index.
Such “grating superstructures’ have been written in optical
fibers where the two periods are typically d=~0.5 um and
A ~1 mm [2]. The rapid refractive index variation on its own
gives rise to photonic band gaps where the light cannot
propagate due to Bragg reflection. These band gaps corre-
spond to regions of high reflectivity. The presence of an ad-
ditional periodicity A>d in the refractive index creates ad-
ditional reflection peaks [3]. These new peaks are clustered
around frequencies where a uniform grating would be
strongly reflecting.

To understand this property of grating superstructures it is
informative to consider why a uniform grating does not re-
flect strongly at frequencies far from the Bragg resonance:
light diffracted off different interfaces is not in phase, as
shown schematically in Fig. 2. However, if the parts with
negative phase, say, are removed, as in a superstructure (Fig.
1), then strong reflection results leading to the formation of
Rowland ghost gaps.

Previously much of the work on grating superstructures
has been concerned with their linear reflection spectrum, i.e.,
predicting the position and strength of the Rowland ghosts.
This linear analysis suggests that for frequencies close to a
single ghost gap the grating superstructure behaves almost
identically to a uniform grating [3]. Here we report on the
nonlinear properties of grating superstructures and how they
compare with nonlinear uniform gratings. Nonlinear uniform
gratings posses solitary wave solutions, “gap solitons” [4],
whose frequency content lies near the band gap of the uni-
form grating. This paper describes a class of solitary waves
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whose frequency content can be close to any ghost gap. Such
solutions are generalizations of gap solitons to superstructure
gratings.

II. COUPLED MODE EQUATIONS

We consider a one dimensional superstructure Bragg grat-
ing whose refractive index varies with a base period d, and
with a superperiod A. The grating couples the forward and
backward traveling modes whose propagation constants dif-
fer by 27/d=2k,. The refractive index profile n(x) of a
superstructure Bragg grating is then given by

n(x)=n(x)+An(x)cos2kyx, (1)

where n(x) and An(x) are periodic with period A. Note that
for a uniform grating # and An are constant. For frequencies
w close to the Bragg resonant frequency wy we can write the
electric field as

Et,x)=[F, (t,x)eT*+ F_(t,x)e”*]e " +c.c.,
()

where %, and % _ are the slowly varying envelopes of the
modes. With this ansatz for the electric field, Maxwell’s
equations with a Kerr nonlinearity n(?) can be approximated
by the nonlinear coupled mode equations (NLCME’s) [5,6]:
OF, i dF,
j +

1

ox Vg Ot

+2I Z_ |2 o +T| 7, |? #.=0,

+k(x) F_+[A+6(x)] F

.0797_+i M?_+ F o +[A+8(x)] 7
i Y, T k(x) Fo+[ (x)].7-
+2T| 7 |2 7_+T| 7_|* #_=0, 3)
Grating Profile
|,A_| .
n M 11 11— 11
position

FIG. 1. Schematic of the refractive index profile for a grating
superstructure. The light propagates parallel to the horizontal axis.
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FIG. 2. Schematic of the refractive index profile for a uniform
grating. The phase of the light reflected from each part is indicated
by + or —.

where [5,6]

wAn(x) A r_471';5
NP W/

n?, (4

Kk(x)=

and v, is the group velocity in the absence of a grating, \ is
the free space wavelength, and Z the vacuum impedance.
After a trivial rescaling we can take v,=1 without loss of
generality. The function «(x) measures the strength of the
coupling while the detuning A is a normalized frequency.
Finally 8(x) describes the shift in the Bragg wavelength; for
gratings written in optical fibers &(x) =2« (x) [5], which we
assume is true here, although it does not significantly affect
the analysis. Nonlinear effects are described by I' which we
take to be constant in space although this is not essential. For
a uniform linear grating I'=0 and « and & are constant.
Light incident upon a uniform grating at detunings A within
the band gap —3x<<A<—k cannot propagate in the linear
regime and is thus strongly reflected. While at frequencies
far from the Bragg resonance (|A|>«) light propagates
freely.

In a nonlinear uniform grating, a two parameter family of
solitary waves exists [7]. These gap solitons are all singly
peaked, with a frequency and width determined by the pa-
rameter 5 where 0<E <. The center frequency of a gap
soliton is close to the band gap of the grating. The second
parameter v, where —1<<v <1, determines the velocity of
the soliton which travels at a speed of vc/n [4].

Having briefly discussed the solutions to Egs. (3) when
the coefficients are constant, we now treat grating superstruc-
tures where « and 8 vary with a period of A. In any periodic
medium the natural basis set to use in analysis are the Bloch
functions: the solutions to the linear problem for an infinite
medium and which form a complete orthogonal set. Each
Bloch function ¢  is labeled by two ““quantum numbers:” a
reduced wave number k and an integer / that labels the
photonic bands. At a given k therefore, the associated fre-
quencies A, may be labeled uniquely by /. By plotting the
values of A, against k we obtain the photonic band diagram
corresponding to the dispersion relation for a grating. Part of
a typical photonic band diagram is shown in Fig. 3 for a
superstructure with parameters

k(x)=[1+0.8 cos(2mx/A)] ecm™! &)

with A=0.9 cm. Gaps occur when for a range of A’s no
running wave solutions can be found. It is at these frequen-
cies that the grating is highly reflective. These “ghost gaps”
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FIG. 3. Photonic band structure of the grating superstructure
used in the numerical simulations. Here «(x)=[1
+0.8 cos[(27/Ax)]] cm ™! with A=0.9 cm. The detuning A is mea-
sured in inverse cm.

are analogous to the ghost lines studied by Rowland in the
context of diffraction gratings [1].

To describe the positions of the ghost gaps we need the
detunings

A, =— 8y+sgn(m)\(mmw/A)*+ 32, (6)

where m=0,+1,+2,..., ko is the zeroth order Fourier
component of «, and similarly for &§,. The function
sgn(m) is defined by sgn(m)=1 if m>0, sgn(0)=0, and
sgn(m)=—1 if m<<0. If the superstructure is weak then
there is a “ghost gap” centered around each detuning A, ,
with a width, in normalized units (v,=1), of 2«, where
K, is the strength of mth Fourier coefficient of «. If a par-
ticular Fourier component vanishes then the associated gap
does not appear. Note that the A,, are the only frequencies
where ghost gaps can appear. However, when the modulation
becomes deep additional ghost gaps appear at frequencies
A,, where the corresponding Fourier coefficient is zero, and
the strength and positions of the other gaps change. This is
illustrated in Fig. 3 where the Fourier expansion of « con-
tains three terms [see Eq. (5)]; zeroth order which corre-
sponds to the large gap centered at A=—2 cm ™!, and the *+1
terms which correspond to the gaps above and below this
gap. Although the Fourier coefficient for the *1 terms are
equal, the sizes of the ghost gaps are different implying that
the grating superstructure is deep. Also gaps now appear at
frequencies where the associated Fourier coefficients vanish.

Below we consider systems where the range of frequen-
cies of interest lies near a ghost gap. A typical ghost can be
seen in Fig. 3 lying between A,=—5.0 cm™! and
A,=—6.2 cm™!. Since for each k the associated Bloch func-
tions are complete we can represent any field distribution as
a linear combination of them with constant coefficients. For
field distributions with frequencies near a particular gap, we
expect that the largest terms in our expansion would corre-
spond to the Bloch functions ¢, and ¢, at the top (A,) and
bottom (A;) of the gap of interest, respectively (see Fig. 3).
We therefore use the following ansatz for the field envelopes
[cf. Eq. (2)]:
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F(x,0)=[fu(x,0) @u(x) + filx, 1) r(x)Je 40, (7)

where . #=(%,,%_) is a two component column vector,
while Ay=(A,+A;)/2 is the frequency at the center of the
band gap we are considering. A consequence of truncating
the expansion is that the coefficients f, and f, are now
slowly varying ‘“superenvelope functions” which can also
describe the effects of the nonlinearity.

Substituting Eq. (7) into the coupled mode equations
leads to two equations for f, /(x,t). These are simplified by
projecting onto both ¢,(x) and ¢,(x) and using the orthogo-
nality of the Bloch functions. The integrals are performed by
assuming that the superenvelopes f, ;(x,t) are constant over
a superlattice period A. This procedure is similar to that
described by Salinas et al. [8] and the references therein.
After performing the overlap integrals it can be shown that
the superpositions

fe=fi+fu (®

satisfy the supercoupled mode equations

of+ i dfy . .
R R TR (YN T
H Do AT (fafEH o f e +Taf2 f5=0, (9)

af _ i Of _ - -
—i—&fx—+l;—(],:—+i%f++2Flf+l2f-+F|f-|2f-+F1(If—|2

Ff D AT i(fafEH O f-+Tof3 f* =0,

which are very similar to the original coupled mode equa-
tions (3). Note however that, in contrast to Egs. (3), for a
periodic superstructure the grating strength « is constant, and
that the terms in & are totally absent, as they reside now in
the details of the Bloch functions. The fact that Egs. (9) can
be derived implies that, around each of its ghost gaps, a
superstructure grating behaves approximately like a uniform
grating. However, the nonlinear coefficients in the super-
coupled mode equations (9) are more complicated than in
Egs. (3), though, as we discuss below, this poses no signifi-
cant problem. These nonlinear equations were derived previ-
ously in a different context [8] and solitary wave solutions
have been found. We can thus adapt these previously known
solutions to our problem. These new solitary waves form
approximate solutions to the original NLCME’s [Egs. (3)]
with periodic parameters but as we will show in Sec. III the
approximation is a good one.

In the new nonlinear equations k, the new group velocity
V, and nonlinear coefficients all depend on the Bloch func-
tions. The nonlinear coefficients T, I'y, and I'; in Egs. (9)
are linear combinations of various overlap integrals of com-
binations of the Bloch functions and the nonlinearity. For
shallow superstructures « equals the appropriate Fourier co-
efficient in the expansion of «(x) which agrees with the
earlier stated result [3]. In order to determine the coefficients
it is necessary to know the Bloch functions. These we obtain
using a matrix method [9]. In the cases we have examined
the nonlinear terms I'y and I', are much smaller than I" and
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FIG. 4. Typical intensity profile of a ghost gap soliton. The solid
line shows the total intensity | .9, |?>+]|.#_|%, the dotted line
| #,|%, and the dashed line | .#_|2.

thus can be neglected. In this limit the new equations are
formally identically to the old equations but with constant
coefficients.

III. SOLITARY WAVES IN GHOST GAPS

In Sec. II we stated that for frequencies close to a ghost
gap the original coupled mode equations (3) with periodic
coefficients could be approximated by the new supercoupled
mode equations (9) with constant coefficients. These new
equations have solitary wave solutions and hence our origi-
nal coupled mode equations have solitary wave solutions
with frequencies around any ghost gap. We note in passing
that our approach is not limited to describing pulses and can
be used to analyze the continuous wave properties of nonlin-
ear grating superstructures.

Figure 4 shows a typical ghost gap soliton at the envelope
level for the grating given in Fig. 3. This solution was ob-
tained by solving the supercoupled mode equations [Egs. (9)]
for f. and then obtaining .%#. from Egs. (8) and (7). The
frequency of the soliton lies within the ghost gap between
A,=—5.0 cm ! and A;=—6.2 cm™! in Fig. 3. The inten-
sity has been normalized such that I'=1. In this case the
parameters in the supercoupled mode equations [Eq. (9)] are
k=0.623 cm™!, V=0.96, '=0.519 while I'; and I, have
been neglected. The superenvelopes of the fields are the stan-
dard gap solitons [4] with parameters 5 =0.5 and v=0.5.
The rapid variations on the intensity profile are due to the
underlying Bloch functions while the superenvelopes of the
fields described by f. are smooth. These variations have a
period on the order of A and as the soliton propagates the
wriggles remain stationary while the soliton moves under
them. This then implies that the soliton’s intensity profile
oscillates with a period 7= A/v where v is the velocity of
the soliton. These large scale periodic oscillations in the in-
tensity profile of the envelopes do not exist for the ordinary
gap solitons. OQur numerical simulations of Egs. (3) suggest
that these solutions appear to be stable and that they can
propagate over distances much longer than their width, and
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indeed longer than any current grating design suggesting that
they can be observed.

IV. CONCLUSION

We have shown that in a nonlinear grating superstructure
solitary wave solutions exist within each of the ghost gaps.
The solutions appear as superenvelopes which modulate the
Bloch functions of the grating. These solutions appear to be
stable and can propagate over large distances. In addition,
these solutions can be created at an interface by an incident
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pulse. The power necessary to see these solutions is compa-
rable to the power needed to see a conventional gap soliton.
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